List of LM-series integrated circuits
The following is a list of LM-series integrated circuits. Many were among the first analog integrated circuits commercially produced since late 1965;[1] some were groundbreaking innovations. As of 2007 many are still being used.[2] The LM series originated with integrated circuits made by National Semiconductor.[2][3] The prefix LM stands for linear monolithic, referring to the analog components integrated onto a single piece of silicon.[4] Because of the popularity of these parts, many of them were second-sourced by other manufacturers who kept the sequence number as an aid to identification of compatible parts.[3] Several generations of pin-compatible descendants of the original parts have since become de facto standard electronic components.[5]

Operational amplifiers
    
| Part number | Predecessor | Obsolete? | Description | 
|---|---|---|---|
| LM10 | Op-amp with an adjustable voltage reference [6] | ||
| LM12 | Yes | High-power op-amp[7] | |
| LM101 LM201 LM301 | μA709[2] | General-purpose op-amp with external compensation[8] | |
| LM107 LM207 LM307 | μA709 | Yes | General-purpose op-amp[9] | 
| LM108 LM208 LM308 | Yes | Precision op-amp[10] | |
| LM112 LM212 LM312 | Yes | Micropower op-amp with external compensation[11] | |
| LM118 LM218 LM318 | Precision, fast general-purpose op-amp with external compensation[12] | ||
| LM321 | Low-power op-amp[13] | ||
| LM124 LM224 LM324 LM2902 | Quadruple wide-supply-range op-amps[14] | ||
| LM143 LM343 | Yes | High-voltage operational amplifier | |
| LM144 LM344 | Yes | High-voltage, high-slew-rate operational amplifier | |
| LM146 LM346 | only LM146 | Programmable quadruple op-amps[15][16] | |
| LM148 LM248 LM348 | General-purpose quadruple op-amps[17] | ||
| LM158 LM258 LM358 LM2904 | Low-power, wide-supply-range dual op-amps[18] | ||
| LM392 | Low-power dual op-amps and comparator[19] | ||
| LM432 | LM358, LMV431 | Dual op-amps with fixed 2.5 V reference[20] | |
| LM611 | Op-amp with an adjustable voltage reference[21] | ||
| LM614 | Quadruple op-amps with an adjustable voltage reference[22] | ||
| LM675 | Power op-amp with a maximal current output of 3 amperes[23] | ||
| LM709 | Yes | General-purpose op-amp[24] | |
| LM741 | LM709 | General-purpose op-amp.[25] Widely used. | |
| LM747 | Yes | General-purpose dual op-amp.[26] | |
| LM748 | General-purpose op-amp with external compensation[27] | ||
| LM833 | Dual high-speed audio operational amplifiers[28] | ||
| LM837 | Low-noise quadruple op-amps [29] | 
Differential comparators
    
| Part number | Predecessor | Obsolete? | Description | 
|---|---|---|---|
| LM306 | High speed differential comparator with strobes[30] | ||
| LM111 LM211 LM311 | LM106 LM710 | High speed differential comparator with strobes[31] | |
| LM119 LM219 LM319 | LM711(?) | High speed dual comparators[32] | |
| LM139 LM239 LM339 LM2901 | Quadruple wide supply range comparators[33] | ||
| LM160 LM360 | μA760 | High speed comparator with complementary TTL outputs[34] | |
| LM161 LM361 | only LM161 | High speed comparator with strobed complementary TTL outputs[35][36] | |
| LM193 LM293 LM393 LM2903 | Dual wide supply range comparators[37] | ||
| LM397 | General purpose comparator with an input common mode that includes ground[38] | ||
| LM613 | Dual op-amps, dual comparators and adjustable reference[39] | 
Current-mode (Norton) amplifiers
    
| Part number | Predecessor | Obsolete? | Description | 
|---|---|---|---|
| LM359 | Dual, high speed, programmable current mode (Norton) amplifiers[40] | ||
| LM3900 | Quad, current mode (Norton) amplifiers. Rail to Rail output.[41] | 
Instrumentation amplifiers
    
| Part number | Predecessor | Obsolete? | Description | 
|---|---|---|---|
| LM363 | Yes | Precision instrumentation amplifier[42] | 
Audio amplifiers
    
| Part number | Predecessor | Obsolete? | Description | 
|---|---|---|---|
| LM377 | Yes | Dual 2 W audio power amplifier | |
| LM378 | Yes | Dual 4 W audio power amplifier | |
| LM379 | Yes | Dual 6 W audio power amplifier | |
| LM380 | 2.5 W audio power amplifier (fixed 34 dB gain)[43] | ||
| LM383/LM2002 | Yes | 8 W audio power amplifier | |
| LM384 | 5 W audio power amplifier (fixed 34 dB gain)[44] | ||
| LM1875 | 20 W audio power amplifier (up to 90 dB gain)[45] | ||
| LM1876 | Dual 20 W audio power amplifier with Mute and Standby Modes (up to 90 dB gain)[46] | ||
| LM386 | Low voltage audio power amplifier[47] | ||
| LM389 | Yes | Low voltage audio power amplifier (same as LM386) with 3 NPN transistors | |
| LM3875 | Yes | High-performance 56 W audio power amplifier[48] | |
| LM3886 | High-performance 68 W audio power amplifier[49] | 
Precision reference
    
| Part number | Predecessor | Obsolete? | Description | 
|---|---|---|---|
| LM113 LM313 | only LM313 | Temperature compensated Zener reference diode, 1.22 V breakdown voltage[50][51] | |
| LM329 | Temperature compensated Zener reference diode, 6.9 V breakdown voltage[52] | ||
| LM136 LM236 LM336 | 2.5 V or 5 V Zener reference diode with temperature coefficient trimmer[53] | ||
| LM368 | Yes | 2.5 V precision voltage reference[54] | |
| LM169 LM369 | LM199 | Yes | 2.5 V temperature compensated precision voltage reference[55] | 
| LM185 LM285 LM385 | Fixed (1.2 V, 2.5 V) or adjustable micropower voltage reference[56][57] | ||
| LM129 LM329 | LM129 | Fixed (6.95 V) buried zener voltage reference. | |
| LM199 LM299 LM399 | LM199 & LM299 | Fixed (6.95 V) voltage reference, with built in heater (oven controlled version of LM329).[58] | |
| LM431 | Adjustable precision Zener shunt regulator (2.5 V-36 V)[59] | 
Voltage regulators
    
| Part number | Predecessor | Obsolete? | Description | 
|---|---|---|---|
| LM105 LM305 | LM100 | Adjustable positive voltage regulator (4.5 V-40 V)[60] | |
| LM109 LM309 | 5-volt regulator (up to 1 A)[61] | ||
| LM117 LM317 | Adjustable 1.5 A positive voltage regulator (1.25 V-37 V)[62] | ||
| LM120 LM320 | Fixed 1.5 A negative voltage regulator (-5 V, -12 V, -15 V)[63] | ||
| LM123 LM323 | Fixed 3 A, 5-volt positive voltage regulator[64] | ||
| LM325 | Yes | Dual ±15-volt voltage regulator[65] | |
| LM330 | 5-volt positive voltage regulator, 0.6 V input-output difference[66] | ||
| LM333 | Yes | Adjustable 3 A negative voltage regulator (-1.2 V to -32 V)[67] | |
| LM237 LM337 | Adjustable 1.5 A negative voltage regulator (-1.2 V to -37 V)[68] | ||
| LM138 LM338 | Adjustable 5 A voltage regulator (1.2 V-32 V)[69] | ||
| LM140 LM340 | LM78xx | 1 A positive voltage regulator (5 V, 12 V, 15 V), can be adjustable[70][71] | |
| LM341 LM78Mxx | 0.5 A protected positive voltage regulators (5 V, 12 V, 15 V)[72] | ||
| LM145 LM345 | Yes | Fixed 3 A, -5-volt negative voltage regulator[73] | |
| LM150 LM350 | only LM150 | Adjustable 3 A, positive voltage regulator (1.2 V-33 V)[74][75] | |
| LM723 | Low power variable voltage regulator | ||
| LM78xx | Fixed 1 A positive voltage regulators (5 V-24 V)[76] | ||
| LM79xx | Fixed 1.5 A negative voltage regulators (-5 V, -12 V, -15 V)[77] | ||
| LM2576 | Fixed and adjustable 3 A buck/buck-boost switching regulators. output range (1.23v to 37v).[78] | ||
| LM2596 | Fixed and adjustable 3 A buck switching regulators. f=150 kHz.[79] | ||
| LM2679 | Fixed and adjustable 5 A buck switching regulators. f=260 kHz.[80] | ||
| LM61430-q1 | 3-V to 36-V, 3-A, Low-EMI Synchronous Step-Down Converter. f=0.2-2 MHz.[81] | 
Voltage-to-frequency converters
    
| Part number | Predecessor | Obsolete? | Description | 
|---|---|---|---|
| LM231 LM331 | Precision voltage-to-frequency converter (1 Hz-100 kHz)[82] | 
Current sources
    
| Part number | Predecessor | Obsolete? | Description | 
|---|---|---|---|
| LM134 LM234 LM334 | Adjustable current source (1 μA-10 mA)[83] | 
Temperature sensors and thermostats
    
| Part number | Predecessor | Obsolete? | Description | 
|---|---|---|---|
| LM19 | Temperature sensor, 2.5 °C accuracy[84] | ||
| LM20 | Temperature sensor, 1.5 °C accuracy[85] | ||
| LM26 | Factory preset thermostat, 3 °C accuracy[86] | ||
| LM27 | Factory preset thermostat (120 °C-150 °C), 3 °C accuracy[87] | ||
| LM34 | Precision Fahrenheit temperature sensor, 0.5 °F accuracy[88] | ||
| LM35 | Precision Celsius temperature sensor, 0.25 °C accuracy[89] | ||
| LM45 | Precision Celsius temperature sensor, 2 °C accuracy[90] | ||
| LM50 | Single supply Celsius temperature sensor, 2 °C accuracy[91] | ||
| LM56 | Dual output resistor programmable thermostat with analog temperature sensor[92] | ||
| LM60 LM61 LM62 | Single supply Celsius temperature sensors (The difference between the components is the voltage scale)[93] | ||
| LM75A | Digital temperature sensor and programmable thermostat.[94] | ||
| LM135 LM235 LM335 | Precision Zener temperature sensor, 1 °C accuracy[95] | 
Others
    
| Part number | Predecessor | Obsolete? | Description | 
|---|---|---|---|
| LM102 LM202 LM302 | Yes | Voltage Followers | |
| LM110 LM210 LM310 | Yes | Voltage Followers | |
| LM194 LM394 | Yes | Supermatched NPN Transistor Pair | |
| LM566 | Yes | Voltage Controlled Oscillator (VCO) | |
| LM567 | No | Tone decoder | |
| LM3909 | LED Flasher/Oscillator | ||
| LM3914 | Bargraph display driver (linear steps) | ||
| LM3915 | Bargraph display driver (logarithmic steps) | ||
| LM3916 | Yes | Bargraph display driver (VU-meter steps) | |
| LM13700 | Operational Transconductance Amplifier (OTA) | 
See also
    
    
Notes
    
- Suffixes that denote specific versions of the part (e.g. LM305 vs. LM305A) are not shown in this list.
- Obsolete 4-bit microprocessors of the LM6400 family, manufactured by Sanyo,[96] have no relationship to the analog LM series and are not included in this list.
- The first digit of each part denote different temperature ranges. Mostly, LM1xx indicates military-grade temperature range of -55 °C to +125 °C, LM2xx indicates industrial-grade temperature range of -25 °C to +85 °C and LM3xx indicates commercial temperature range of 0 °C to 70 °C.[97]
- Some of the obsolete parts are continued to be manufactured by different companies other than the original manufacturer, e.g. Fairchild Semiconductor.[98]
References
    
- "1964: The First Widely-Used Analog Integrated Circuit is Introduced | The Silicon Engine | Computer History Museum". www.computerhistory.org. Retrieved 2021-12-13.
- Lojek, Bo (28 July 2007). History of Semiconductor Engineering. Springer. pp. 299–301. Retrieved 19 September 2013.
- Schroeder, Chris (1996). Inside OrCAD. Newnes. p. 17. ISBN 9780750697002.
- Pollefliet, Jean (2004). Vermogenelektronica. Elektronische vermogencontrole (in Dutch). Vol. 1. Academia Press. p. 5.32. ISBN 9789038206578. Retrieved 20 September 2013.
- Lenk, John (28 June 1996). Simplified Design of IC Amplifiers. Newnes. p. 152. ISBN 9780080517186. Retrieved 19 September 2013.
- "LM10". Texas Instruments. Retrieved 21 September 2013.
- http://pdf.datasheetcatalog.com/datasheet/nationalsemiconductor/DS008704.PDF
- "LM101A-N". Texas Instruments. Retrieved 20 July 2012.
- "LM107-N". Texas Instruments. Retrieved 20 July 2012.
- "LM108A-N". Texas Instruments. Retrieved 20 July 2012.
- "LM112-N". Texas Instruments. Retrieved 20 July 2012.
- "LM118-N". Texas Instruments. Retrieved 20 July 2012.
- "LM321". Texas Instruments. Retrieved 20 July 2012.
- "LM124". Texas Instruments. Retrieved 20 July 2012.
- "LM146". Texas Instruments. Retrieved 20 July 2012.
- "LM346". Texas Instruments. Retrieved 20 July 2012.
- "LM148". Texas Instruments. Retrieved 20 July 2012.
- "LM158". Texas Instruments. Retrieved 20 July 2012.
- "LM392". Texas Instruments. Retrieved 20 July 2012.
- "LM432". Texas Instruments. Retrieved 21 September 2013.
- "LM611". Texas Instruments. Retrieved 21 September 2013.
- "LM614". Texas Instruments. Retrieved 21 September 2013.
- "LM675". Texas Instruments. Retrieved 21 September 2013.
- "LM709". Texas Instruments. Retrieved 22 September 2013.
- "LM741". Texas Instruments. Retrieved 22 September 2013.
- "LM747". Texas Instruments. Retrieved 21 October 2021.
- "LM748". Texas Instruments. Retrieved 22 September 2013.
- "LM833". Texas Instruments. Retrieved 20 July 2012.
- "LM837". Texas Instruments. Retrieved 22 September 2013.
- "LM306". Texas Instruments. Retrieved 20 July 2012.
- "LM111". Texas Instruments. Retrieved 20 July 2012.
- "LM119". Texas Instruments. Retrieved 20 July 2012.
- "LM139". Texas Instruments. Retrieved 20 July 2012.
- "LM160QML". Texas Instruments. Retrieved 20 July 2012.
- "LM161". Texas Instruments. Retrieved 20 July 2012.
- "LM361". Texas Instruments. Retrieved 20 July 2012.
- "LM193". Texas Instruments. Retrieved 20 July 2012.
- "LM397". Texas Instruments. Retrieved 20 July 2012.
- "LM613". Texas Instruments. Retrieved 22 September 2013.
- "LM359". Texas Instruments. Retrieved 20 July 2012.
- "LM3900". Texas Instruments. Retrieved 20 July 2020.
- "LM363". Texas Instruments. Retrieved 20 July 2012.
- "LM380". Texas Instruments. Retrieved 20 July 2012.
- "LM384". Texas Instruments. Retrieved 20 July 2012.
- "LM1875". Texas Instruments. Retrieved 17 March 2016.
- "LM1876". Texas Instruments. Retrieved 17 March 2016.
- "LM386". Texas Instruments. Retrieved 20 July 2012.
- "LM386". Texas Instruments. Retrieved 12 January 2015.
- "LM3886". Texas Instruments. Retrieved 11 March 2013.
- "LM113". Texas Instruments. Retrieved 20 July 2012.
- "LM313". Texas Instruments. Retrieved 20 July 2012.
- "LM329". Texas Instruments. Retrieved 20 July 2012.
- "LM236-2.5". Texas Instruments. Retrieved 20 July 2012.
- "LM368". Texas Instruments. Retrieved 20 July 2012.
- "LM169". Texas Instruments. Retrieved 20 July 2012.
- "LM185-1.2-N". Texas Instruments. Retrieved 20 July 2012.
- Shirriff, Ken (April 2022). "Reverse-engineering the LM185 voltage reference chip and its bandgap reference".
- "LM199". Texas Instruments. Archived from the original on 17 May 2014. Retrieved 20 July 2012.
- "LM431". Texas Instruments. Retrieved 22 September 2013.
- "LM105". Texas Instruments. Retrieved 20 July 2012.
- "LM109". Texas Instruments. Retrieved 20 July 2012.
- "LM317". Texas Instruments. Retrieved 20 July 2012.
- "LM120". Texas Instruments. Retrieved 20 July 2012.
- "LM123QML". Texas Instruments. Retrieved 20 July 2012.
- "LM325". Texas Instruments. Retrieved 20 July 2012.
- "LM330-N". Texas Instruments. Retrieved 20 July 2012.
- "LM333". Texas Instruments. Retrieved 20 July 2012.
- "LM237". Texas Instruments. Retrieved 20 July 2012.
- "LM138". Texas Instruments. Retrieved 20 July 2012.
- "LM140L". Texas Instruments. Retrieved 20 July 2012.
- "LM140JAN". Texas Instruments. Retrieved 20 July 2012.
- "LM341". Texas Instruments. Retrieved 20 July 2012.
- "LM145". Texas Instruments. Retrieved 20 July 2012.
- "LM150". Texas Instruments. Retrieved 20 July 2012.
- "LM350-N". Texas Instruments. Retrieved 20 July 2012.
- "LM7805C". Texas Instruments. Retrieved 20 July 2012.
- "LM7905". Texas Instruments. Retrieved 25 March 2015.
- "LM2576". Texas Instruments. Retrieved 12 June 2016.
- "LM2596" (PDF). Texas Instruments. Retrieved 5 September 2020.
- "LM2679" (PDF). Texas Instruments. Retrieved 5 September 2020.
- "LM61430-q1" (PDF). Texas Instruments. Retrieved 1 September 2020.
- "LM231". Texas Instruments. Retrieved 20 July 2012.
- "LM134". Texas Instruments. Retrieved 20 July 2012.
- "LM19". Texas Instruments. Retrieved 22 September 2013.
- "LM20". Texas Instruments. Retrieved 22 September 2013.
- "LM26". Texas Instruments. Retrieved 22 September 2013.
- "LM27". Texas Instruments. Retrieved 22 September 2013.
- "LM34". Texas Instruments. Retrieved 22 September 2013.
- "LM35". Texas Instruments. Retrieved 30 November 2016.
- "LM45". Texas Instruments. Retrieved 22 September 2013.
- "LM50". Texas Instruments. Retrieved 22 September 2013.
- "LM57". Texas Instruments. Retrieved 22 September 2013.
- "LM60". Texas Instruments. Retrieved 22 September 2013.
- "LM75A". Texas Instruments. Retrieved 11 October 2017.
- "LM135". Texas Instruments. Retrieved 20 July 2012.
- Buchsbaum, W. (1983). Microprocessor and Microcomputer Data Digest. Reston. p. 185. ISBN 9780835943819.
- Jung, Walter G. (2006). Op Amp Applications Handbook. Newnes. p. 806. ISBN 9780750678445. Retrieved 19 September 2013.
- "LM7805A". Fairchild Semiconductor. Retrieved 20 July 2012.
Further reading
    
- Historical Data Books
- Linear Databook (1980, 1376 pages), National Semiconductor
- Linear Databook 1 (1988, 1262 pages), National Semiconductor
- Linear Databook 2 (1988, 934 pages), National Semiconductor
- Linear Databook 3 (1988, 930 pages), National Semiconductor
- Linear and Interface Databook (1990, 1658 pages), Motorola
- Linear and MOSFET Databook (1982, 1082 pages), RCA
- Historical Design Books
- Analog Applications Manual (1979, 418 pages), Signetics
- Linear Applications Handbook (1994, 1287 pages), National Semiconductor
- Linear Design Seminar Slide Book (1992, 502 pages), Texas Instruments
- Linear Design Seminar Reference Book (1993, 451 pages), Texas Instruments