List of optics equations
This article summarizes equations used in optics, including geometric optics, physical optics, radiometry, diffraction, and interferometry.
Definitions
    
    Geometric optics (luminal rays)
    
General fundamental quantities
    
- Quantity (common name/s) - (Common) symbol/s - SI units - Dimension - Object distance - x, s, d, u, x1, s1, d1, u1 - m - [L] - Image distance - x', s', d', v, x2, s2, d2, v2 - m - [L] - Object height - y, h, y1, h1 - m - [L] - Image height - y', h', H, y2, h2, H2 - m - [L] - Angle subtended by object - θ, θo, θ1 - rad - dimensionless - Angle subtended by image - θ', θi, θ2 - rad - dimensionless - Curvature radius of lens/mirror - r, R - m - [L] - Focal length - f - m - [L] 
- Quantity (common name/s) - (Common) symbol/s - Defining equation - SI units - Dimension - Lens power - P - m−1 = D (dioptre) - [L]−1 - Lateral magnification - m - dimensionless - dimensionless - Angular magnification - m - dimensionless - dimensionless 
Physical optics (EM luminal waves)
    
There are different forms of the Poynting vector, the most common are in terms of the E and B or E and H fields.
- Quantity (common name/s) - (Common) symbol/s - Defining equation - SI units - Dimension - Poynting vector - S, N - W m−2 - [M][T]−3 - Poynting flux, EM field power flow - ΦS, ΦN - W - [M][L]2[T]−3 - RMS Electric field of Light - Erms - N C−1 = V m−1 - [M][L][T]−3[I]−1 - Radiation momentum - p, pEM, pr - J s m−1 - [M][L][T]−1 - Radiation pressure - Pr, pr, PEM - W m−2 - [M][T]−3 
Radiometry
    

For spectral quantities two definitions are in use to refer to the same quantity, in terms of frequency or wavelength.
- Quantity (common name/s) - (Common) symbol/s - Defining equation - SI units - Dimension - Radiant energy - Q, E, Qe, Ee - J - [M][L]2[T]−2 - Radiant exposure - He - J m−2 - [M][T]−3 - Radiant energy density - ωe - J m−3 - [M][L]−3 - Radiant flux, radiant power - Φ, Φe - W - [M][L]2[T]−3 - Radiant intensity - I, Ie - W sr−1 - [M][L]2[T]−3 - Radiance, intensity - L, Le - W sr−1 m−2 - [M][T]−3 - Irradiance - E, I, Ee, Ie - W m−2 - [M][T]−3 - Radiant exitance, radiant emittance - M, Me - W m−2 - [M][T]−3 - Radiosity - J, Jν, Je, Jeν - W m−2 - [M][T]−3 - Spectral radiant flux, spectral radiant power - Φλ, Φν, Φeλ, Φeν - W m−1 (Φλ) 
 W Hz−1 = J (Φν)- [M][L]−3[T]−3 (Φλ) 
 [M][L]−2[T]−2 (Φν)- Spectral radiant intensity - Iλ, Iν, Ieλ, Ieν - W sr−1 m−1 (Iλ) 
 W sr−1 Hz−1 (Iν)- [M][L]−3[T]−3 (Iλ) 
 [M][L]2[T]−2 (Iν)- Spectral radiance - Lλ, Lν, Leλ, Leν - W sr−1 m−3 (Lλ) 
 W sr−1 m−2 Hz−1 (Lν)- [M][L]−1[T]−3 (Lλ) 
 [M][L]−2[T]−2 (Lν)- Spectral irradiance - Eλ, Eν, Eeλ, Eeν - W m−3 (Eλ) 
 W m−2 Hz−1 (Eν)- [M][L]−1[T]−3 (Eλ) 
 [M][L]−2[T]−2 (Eν)
Equations
    
    Luminal electromagnetic waves
    
- Physical situation - Nomenclature - Equations - Energy density in an EM wave - = mean energy density
 - For a dielectric: 
 - Kinetic and potential momenta (non-standard terms in use) - Potential momentum: - Kinetic momentum: - Canonical momentum: - Irradiance, light intensity - = time averaged poynting vector
- I = irradiance
- I0 = intensity of source
- P0 = power of point source
- Ω = solid angle
- r = radial position from source
 - At a spherical surface: - Doppler effect for light (relativistic) - Cherenkov radiation, cone angle - n = refractive index
- v = speed of particle
- θ = cone angle
 - Electric and magnetic amplitudes - E = electric field
- H = magnetic field strength
 - For a dielectric - EM wave components - Electric - Magnetic 
Geometric optics
    
- Physical situation - Nomenclature - Equations - Critical angle (optics) - n1 = refractive index of initial medium
- n2 = refractive index of final medium
- θc = critical angle
 - Thin lens equation - f = lens focal length
- x1 = object length
- x2 = image length
- r1 = incident curvature radius
- r2 = refracted curvature radius
 - Lens focal length from refraction indices 
 - Image distance in a plane mirror - Spherical mirror - r = curvature radius of mirror
 - Spherical mirror equation - Image distance in a spherical mirror 
Subscripts 1 and 2 refer to initial and final optical media respectively.
These ratios are sometimes also used, following simply from other definitions of refractive index, wave phase velocity, and the luminal speed equation:
where:
- ε = permittivity of medium,
- μ = permeability of medium,
- λ = wavelength of light in medium,
- v = speed of light in media.
Polarization
    
- Physical situation - Nomenclature - Equations - Angle of total polarisation - θB = Reflective polarization angle, Brewster's angle
 - intensity from polarized light, Malus's law - I0 = Initial intensity,
- I = Transmitted intensity,
- θ = Polarization angle between polarizer transmission axes and electric field vector
 
Diffraction and interference
    
- Property or effect - Nomenclature - Equation - Thin film in air - n1 = refractive index of initial medium (before film interference)
- n2 = refractive index of final medium (after film interference)
 - Min:
- Max:
 - The grating equation - a = width of aperture, slit width
- α = incident angle to the normal of the grating plane
 - Rayleigh's criterion - Bragg's law (solid state diffraction) - d = lattice spacing
- δ = phase difference between two waves
 - For constructive interference:
- For destructive interference:
 - where - Single slit diffraction intensity - I0 = source intensity
- Wave phase through apertures
 - N-slit diffraction (N ≥ 2) - d = centre-to-centre separation of slits
- N = number of slits
- Phase between N waves emerging from each slit
 - N-slit diffraction (all N) - Circular aperture intensity - a = radius of the circular aperture
- J1 is a Bessel function
 - Amplitude for a general planar aperture - Cartesian and spherical polar coordinates are used, xy plane contains aperture - A, amplitude at position r
- r' = source point in the aperture
- Einc, magnitude of incident electric field at aperture
 - Near-field (Fresnel) - Far-field (Fraunhofer) - Huygens-Fresnel-Kirchhoff principle - r0 = position from source to aperture, incident on it
- r = position from aperture diffracted from it to a point
- α0 = incident angle with respect to the normal, from source to aperture
- α = diffracted angle, from aperture to a point
- S = imaginary surface bounded by aperture
- = unit normal vector to the aperture
 - Kirchhoff's diffraction formula 
Astrophysics definitions
    
In astrophysics, L is used for luminosity (energy per unit time, equivalent to power) and F is used for energy flux (energy per unit time per unit area, equivalent to intensity in terms of area, not solid angle). They are not new quantities, simply different names.
- Quantity (common name/s) - (Common) symbol/s - Defining equation - SI units - Dimension - Comoving transverse distance - DM - pc (parsecs) - [L] - Luminosity distance - DL - pc (parsecs) - [L] - Apparent magnitude in band j (UV, visible and IR parts of EM spectrum) (Bolometric) - m - dimensionless - dimensionless - Absolute magnitude - (Bolometric) - M - dimensionless - dimensionless - Distance modulus - μ - dimensionless - dimensionless - Colour indices - (No standard symbols) 
 - dimensionless - dimensionless - Bolometric correction - Cbol (No standard symbol) - dimensionless - dimensionless 
See also
    
- Defining equation (physics)
- Defining equation (physical chemistry)
- List of electromagnetism equations
- List of equations in classical mechanics
- List of equations in gravitation
- List of equations in nuclear and particle physics
- List of equations in quantum mechanics
- List of equations in wave theory
- List of relativistic equations
Sources
    
- P.M. Whelan; M.J. Hodgeson (1978). Essential Principles of Physics (2nd ed.). John Murray. ISBN 0-7195-3382-1.
- G. Woan (2010). The Cambridge Handbook of Physics Formulas. Cambridge University Press. ISBN 978-0-521-57507-2.
- A. Halpern (1988). 3000 Solved Problems in Physics, Schaum Series. Mc Graw Hill. ISBN 978-0-07-025734-4.
- R.G. Lerner; G.L. Trigg (2005). Encyclopaedia of Physics (2nd ed.). VHC Publishers, Hans Warlimont, Springer. pp. 12–13. ISBN 978-0-07-025734-4.
- C.B. Parker (1994). McGraw Hill Encyclopaedia of Physics (2nd ed.). McGraw Hill. ISBN 0-07-051400-3.
- P.A. Tipler; G. Mosca (2008). Physics for Scientists and Engineers: With Modern Physics (6th ed.). W.H. Freeman and Co. ISBN 978-1-4292-0265-7.
- L.N. Hand; J.D. Finch (2008). Analytical Mechanics. Cambridge University Press. ISBN 978-0-521-57572-0.
- T.B. Arkill; C.J. Millar (1974). Mechanics, Vibrations and Waves. John Murray. ISBN 0-7195-2882-8.
- H.J. Pain (1983). The Physics of Vibrations and Waves (3rd ed.). John Wiley & Sons. ISBN 0-471-90182-2.
- J.R. Forshaw; A.G. Smith (2009). Dynamics and Relativity. Wiley. ISBN 978-0-470-01460-8.
- G.A.G. Bennet (1974). Electricity and Modern Physics (2nd ed.). Edward Arnold (UK). ISBN 0-7131-2459-8.
- I.S. Grant; W.R. Phillips; Manchester Physics (2008). Electromagnetism (2nd ed.). John Wiley & Sons. ISBN 978-0-471-92712-9.
- D.J. Griffiths (2007). Introduction to Electrodynamics (3rd ed.). Pearson Education, Dorling Kindersley. ISBN 978-81-7758-293-2.
Further reading
    
- L.H. Greenberg (1978). Physics with Modern Applications. Holt-Saunders International W.B. Saunders and Co. ISBN 0-7216-4247-0.
- J.B. Marion; W.F. Hornyak (1984). Principles of Physics. Holt-Saunders International Saunders College. ISBN 4-8337-0195-2.
- A. Beiser (1987). Concepts of Modern Physics (4th ed.). McGraw-Hill (International). ISBN 0-07-100144-1.
- H.D. Young; R.A. Freedman (2008). University Physics – With Modern Physics (12th ed.). Addison-Wesley (Pearson International). ISBN 978-0-321-50130-1.