20,000
20,000 (twenty thousand) is the natural number that comes after 19,999 and before 20,001.
  | ||||
|---|---|---|---|---|
← 0 [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]]  | ||||
| Cardinal | twenty thousand | |||
| Ordinal | 20000th (twenty thousandth)  | |||
| Factorization | 25 × 54 | |||
| Greek numeral | ||||
| Roman numeral | XX | |||
| Binary | 1001110001000002 | |||
| Ternary | 10001022023 | |||
| Octal | 470408 | |||
| Duodecimal | B6A812 | |||
| Hexadecimal | 4E2016 | |||
20,000 is a round number, and is also in the title of Jules Verne's novel Twenty Thousand Leagues Under the Sea.
Selected numbers in the range 20001–29999
    
    20001 to 20999
    
- 20081 = Motorola 68K instruction for no operation (NOP)
 - 20100 = sum of the first 200 natural numbers (hence a triangular number)
 - 20160 = highly composite number;[1] the smallest order belonging to two non-isomorphic simple groups: the alternating group A8 and the Chevalley group A2(4)
 - 20161 = the largest integer that cannot be expressed as a sum of two abundant numbers
 - 20230 = pentagonal pyramidal number[2]
 - 20412 = Leyland number:[3] 93 + 39
 - 20540 = square pyramidal number[4]
 - 20569 = tetranacci number[5]
 - 20593 = unique prime in base 12
 - 20736 = 1442 = 124, 1000012, palindromic in base 15 (622615)
 - 20903 = first prime of form 120k + 23 that is not a full reptend prime
 
21000 to 21999
    
- 21025 = 1452, palindromic in base 12 (1020112)
 - 21147 = Bell number[6]
 - 21181 = the least of five remaining Seventeen or Bust numbers in the Sierpiński problem
 - 21856 = octahedral number[7]
 - 21943 = Friedman prime
 - 21952 = 283
 - 21978 = reverses when multiplied by 4: 4 × 21978 = 87912
 
22000 to 22999
    
- 22050 = pentagonal pyramidal number[2]
 - 22140 = square pyramidal number[4]
 - 22222 = repdigit, Kaprekar number:[8] 222222 = 493817284, 4938 + 17284 = 22222
 - 22447 = cuban prime[9]
 - 22527 = Woodall number: 11 × 211 − 1[10]
 - 22621 = repunit prime in base 12
 - 22699 = one of five remaining Seventeen or Bust numbers in the Sierpiński problem
 
23000 to 23999
    
24000 to 24999
    
- 24211 = Zeisel number[11]
 - 24336 = 1562, palindromic in base 5: 12343215
 - 24389 = 293
 - 24571 = cuban prime[9]
 - 24601 – Jean Valjean's prisoner number in Les Misérables
 - 24631 = Wedderburn–Etherington prime[12]
 - 24649 = 1572, palindromic in base 12: 1232112
 - 24737 = one of five remaining Seventeen or Bust numbers in the Sierpinski problem
 
25000 to 25999
    
- 25011 = the smallest composite number, ending in 1, 3, 7, or 9, that in base 10 remains composite after any insertion of a digit
 - 25085 = Zeisel number[11]
 - 25117 = cuban prime[9]
 - 25200 = highly composite number[1]
 - 25205 = largest number whose factorial is less than 10100000
 - 25585 = square pyramidal number[4]
 
26000 to 26999
    
- 26214 = octahedral number[7]
 - 26227 = cuban prime[9]
 - 26861 = smallest number for which there are more primes of the form 4k + 1 than of the form 4k + 3 up to the number, against Chebyshev's bias
 - 26896 = 1642, palindromic in base 9: 408049
 
27000 to 27999
    
- 27000 = 303
 - 27434 = square pyramidal number[4]
 - 27559 = Zeisel number[11]
 - 27648 = 11 × 22 × 33 × 44
 - 27653 = Friedman prime
 - 27720 = highly composite number;[1] smallest number divisible by the numbers 1 to 12 (there is no smaller number divisible by the numbers 1 to 11)
 - 27846 = harmonic divisor number[13]
 - 27889 = 1672
 
28000 to 28999
    
- 28158 = pentagonal pyramidal number[2]
 - 28374 = smallest integer to start a run of six consecutive integers with the same number of divisors
 - 28393 = unique prime in base 13
 - 28547 = Friedman prime
 - 28559 = nice Friedman prime
 - 28561 = 1692 = 134 = 1192 + 1202, number that is simultaneously a square number and a centered square number, palindromic in base 12: 1464112
 - 28595 = octahedral number[7]
 - 28657 = Fibonacci prime,[14] Markov prime[15]
 - 28900 = 1702, palindromic in base 13: 1020113
 
29000 to 29999
    
- 29241 = 1712, sum of the cubes of the first 18 positive integers
 - 29341 = Carmichael number[16]
 - 29370 = square pyramidal number[4]
 - 29527 = Friedman prime
 - 29531 = Friedman prime
 - 29791 = 313
 
There are 983 prime numbers between 20000 and 30000.
References
    
- "Sloane's A002182 : Highly composite numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
 - "Sloane's A002411 : Pentagonal pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
 - "Sloane's A076980 : Leyland numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
 - "Sloane's A000330 : Square pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
 - "Sloane's A000078 : Tetranacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
 - "Sloane's A000110 : Bell or exponential numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
 - "Sloane's A005900 : Octahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
 - "Sloane's A006886 : Kaprekar numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
 - "Sloane's A002407 : Cuban primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
 - "Sloane's A003261 : Woodall numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
 - "Sloane's A051015 : Zeisel numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
 - "Sloane's A001190 : Wedderburn-Etherington numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
 - "Sloane's A001599 : Harmonic or Ore numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
 - "Sloane's A000045 : Fibonacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
 - "Sloane's A002559 : Markoff (or Markov) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
 - "Sloane's A002997 : Carmichael numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
 
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.