38 (number)
38 (thirty-eight) is the natural number following 37 and preceding 39.
  | ||||
|---|---|---|---|---|
  [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]]  | ||||
| Cardinal | thirty-eight | |||
| Ordinal | 38th (thirty-eighth)  | |||
| Factorization | 2 × 19 | |||
| Divisors | 1, 2, 19, 38 | |||
| Greek numeral | ΛΗ´ | |||
| Roman numeral | XXXVIII | |||
| Binary | 1001102 | |||
| Ternary | 11023 | |||
| Octal | 468 | |||
| Duodecimal | 3212 | |||
| Hexadecimal | 2616 | |||
In mathematics
    
- 38! − 1 yields 523022617466601111760007224100074291199999999 which is the 16th factorial prime.[1]
 - There is no answer to the equation φ(x) = 38, making 38 a nontotient.[2]
 - 38 is the sum of the squares of the first three primes.
 - 37 and 38 are the first pair of consecutive positive integers not divisible by any of their digits.
 - 38 is the largest even number which cannot be written as the sum of two odd composite numbers.
 - The sum of each row of the only non-trivial (order 3) magic hexagon is 38.[3]
 
In science
    
- The atomic number of strontium
 
Astronomy
    
- The Messier object M38, a magnitude 7.0 open cluster in the constellation Auriga
 - The New General Catalogue object NGC 38, a spiral galaxy in the constellation Pisces
 
In other fields
    

Most people will see the number 38, but people with red-green color blindness might see 88 instead.
Thirty-eight is also:
- The 38th parallel north is the pre-Korean War boundary between North Korea and South Korea.[4]
 - The number of slots on an American roulette wheel (0, 00, and 1 through 36; European roulette does not use the 00 slot and has only 37 slots)
 - The number of games that each team in a sports league with 20 teams that plays a full home-and-away schedule (with each team playing the others one time home and one time away) will play in a season. The most notable leagues that currently have a 38-game season are the top divisions of association football in England and Spain, respectively the Premier League and La Liga.
 - Bill C-38 legalized same-sex marriage in Canada
 - The number of years it took the Israelites to travel from Kadesh Barnea to the Zered valley in Deuteronomy.
 - A "38" is often the name for a snub nose .38 caliber revolver
 - The 38 class is the most famous class of steam locomotive used in New South Wales
 - The number of the French department Isère
 - The "over-38 rule" is a feature of the NBA salary cap that affects contracts of players who turn 38 during their deals.
 - Gerald Ford, 38th President of the United States
 - Arnold Schwarzenegger, 38th Governor of California, most recent Republican governor of California, and the second governor to be born outside of the United States
 - Cats have a total of 38 chromosomes in their genome.
 
See also
    
    
References
    
- Sloane, N. J. A. (ed.). "Sequence A002982 (Numbers n such that n! - 1 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
 - (sequence A005277 in the OEIS)
 - Higgins, Peter (2008). Number Story: From Counting to Cryptography. New York: Copernicus. p. 53. ISBN 978-1-84800-000-1.
 - Fry, Michael (5 August 2013). "National Geographic, Korea, and the 38th Parallel". National Geographic. Retrieved 15 May 2021.
 
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.