8-simplex
In geometry, an 8-simplex is a self-dual regular 8-polytope. It has 9 vertices, 36 edges, 84 triangle faces, 126 tetrahedral cells, 126 5-cell 4-faces, 84 5-simplex 5-faces, 36 6-simplex 6-faces, and 9 7-simplex 7-faces. Its dihedral angle is cos−1(1/8), or approximately 82.82°.
| Regular enneazetton (8-simplex) | |
|---|---|
|  Orthogonal projection inside Petrie polygon | |
| Type | Regular 8-polytope | 
| Family | simplex | 
| Schläfli symbol | {3,3,3,3,3,3,3} | 
| Coxeter-Dynkin diagram |                | 
| 7-faces | 9 7-simplex  | 
| 6-faces | 36 6-simplex  | 
| 5-faces | 84 5-simplex  | 
| 4-faces | 126 5-cell  | 
| Cells | 126 tetrahedron  | 
| Faces | 84 triangle  | 
| Edges | 36 | 
| Vertices | 9 | 
| Vertex figure | 7-simplex | 
| Petrie polygon | enneagon | 
| Coxeter group | A8 [3,3,3,3,3,3,3] | 
| Dual | Self-dual | 
| Properties | convex | 
It can also be called an enneazetton, or ennea-8-tope, as a 9-facetted polytope in eight-dimensions. The name enneazetton is derived from ennea for nine facets in Greek and -zetta for having seven-dimensional facets, and -on.
As a configuration
    
This configuration matrix represents the 8-simplex. The rows and columns correspond to vertices, edges, faces, cells, 4-faces, 5-faces, 6-faces and 7-faces. The diagonal numbers say how many of each element occur in the whole 8-simplex. The nondiagonal numbers say how many of the column's element occur in or at the row's element. This self-dual simplex's matrix is identical to its 180 degree rotation.[1][2]
Coordinates
    
The Cartesian coordinates of the vertices of an origin-centered regular enneazetton having edge length 2 are:
More simply, the vertices of the 8-simplex can be positioned in 9-space as permutations of (0,0,0,0,0,0,0,0,1). This construction is based on facets of the 9-orthoplex.
Another origin-centered construction uses (1,1,1,1,1,1,1,1)/3 and permutations of (1,1,1,1,1,1,1,-11)/12 for edge length √2.
Images
    
| Ak Coxeter plane | A8 | A7 | A6 | A5 | 
|---|---|---|---|---|
| Graph |  |  |  |  | 
| Dihedral symmetry | [9] | [8] | [7] | [6] | 
| Ak Coxeter plane | A4 | A3 | A2 | |
| Graph |  |  |  | |
| Dihedral symmetry | [5] | [4] | [3] | 
Related polytopes and honeycombs
    
This polytope is a facet in the uniform tessellations: 251, and 521 with respective Coxeter-Dynkin diagrams:
               , ,               
This polytope is one of 135 uniform 8-polytopes with A8 symmetry.
| A8 polytopes | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  t0 |  t1 |  t2 |  t3 |  t01 |  t02 |  t12 |  t03 |  t13 |  t23 |  t04 |  t14 |  t24 |  t34 |  t05 | 
|  t15 |  t25 |  t06 |  t16 |  t07 |  t012 |  t013 |  t023 |  t123 |  t014 |  t024 |  t124 |  t034 |  t134 |  t234 | 
|  t015 |  t025 |  t125 |  t035 |  t135 |  t235 |  t045 |  t145 |  t016 |  t026 |  t126 |  t036 |  t136 |  t046 |  t056 | 
|  t017 |  t027 |  t037 |  t0123 |  t0124 |  t0134 |  t0234 |  t1234 |  t0125 |  t0135 |  t0235 |  t1235 |  t0145 |  t0245 |  t1245 | 
|  t0345 |  t1345 |  t2345 |  t0126 |  t0136 |  t0236 |  t1236 |  t0146 |  t0246 |  t1246 |  t0346 |  t1346 |  t0156 |  t0256 |  t1256 | 
|  t0356 |  t0456 |  t0127 |  t0137 |  t0237 |  t0147 |  t0247 |  t0347 |  t0157 |  t0257 |  t0167 |  t01234 |  t01235 |  t01245 |  t01345 | 
|  t02345 |  t12345 |  t01236 |  t01246 |  t01346 |  t02346 |  t12346 |  t01256 |  t01356 |  t02356 |  t12356 |  t01456 |  t02456 |  t03456 |  t01237 | 
|  t01247 |  t01347 |  t02347 |  t01257 |  t01357 |  t02357 |  t01457 |  t01267 |  t01367 |  t012345 |  t012346 |  t012356 |  t012456 |  t013456 |  t023456 | 
|  t123456 |  t012347 |  t012357 |  t012457 |  t013457 |  t023457 |  t012367 |  t012467 |  t013467 |  t012567 |  t0123456 |  t0123457 |  t0123467 |  t0123567 |  t01234567 | 
References
    
- Coxeter 1973, §1.8 Configurations
- Coxeter, H.S.M. (1991). Regular Complex Polytopes (2nd ed.). Cambridge University Press. p. 117. ISBN 9780521394901.
- Coxeter, H.S.M.: 
- — (1973). "Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)". Regular Polytopes (3rd ed.). Dover. pp. 296. ISBN 0-486-61480-8.
- Sherk, F. Arthur; McMullen, Peter; Thompson, Anthony C.; Weiss, Asia Ivic, eds. (1995). Kaleidoscopes: Selected Writings of H.S.M. Coxeter. Wiley. ISBN 978-0-471-01003-6.
- (Paper 22) — (1940). "Regular and Semi Regular Polytopes I". Math. Zeit. 46: 380–407. doi:10.1007/BF01181449. S2CID 186237114.
- (Paper 23) — (1985). "Regular and Semi-Regular Polytopes II". Math. Zeit. 188 (4): 559–591. doi:10.1007/BF01161657. S2CID 120429557.
- (Paper 24) — (1988). "Regular and Semi-Regular Polytopes III". Math. Zeit. 200: 3–45. doi:10.1007/BF01161745. S2CID 186237142.
 
 
- Conway, John H.; Burgiel, Heidi; Goodman-Strass, Chaim (2008). "26. Hemicubes: 1n1". The Symmetries of Things. p. 409. ISBN 978-1-56881-220-5.
- Johnson, Norman (1991). "Uniform Polytopes" (Manuscript). {{cite journal}}: Cite journal requires|journal=(help)- Johnson, N.W. (1966). The Theory of Uniform Polytopes and Honeycombs (PhD). University of Toronto. OCLC 258527038.
 
- Klitzing, Richard. "8D uniform polytopes (polyzetta) x3o3o3o3o3o3o3o — ene".
External links
    
- Glossary for hyperspace, George Olshevsky.
- Polytopes of Various Dimensions
- Multi-dimensional Glossary