HD 3443
HD 3443 is a binary system composed of medium-mass main sequence stars in the constellation of Cetus about 50 light years away.
| Observation data Epoch J2000 Equinox J2000 | |
|---|---|
| Constellation | Cetus | 
| Right ascension | 00h 37m 20.7196s[1] | 
| Declination | −24° 46′ 02.1843″[1] | 
| Apparent magnitude (V) | 5.57[2] | 
| Characteristics | |
| HD 3443A | |
| Evolutionary stage | main-sequence star | 
| Spectral type | G9V[3] | 
| Apparent magnitude (g) | 5.95[4] | 
| HD 3443B | |
| Evolutionary stage | main-sequence star | 
| Spectral type | K0.5V[3] | 
| Astrometry | |
| Radial velocity (Rv) | 18.63[5] km/s | 
| Proper motion (μ) | RA: 1450.34 mas/yr[1] Dec.: −19.38 mas/yr[1] | 
| Parallax (π) | 64.93 ± 1.85 mas[3] | 
| Distance | 50 ± 1 ly (15.4 ± 0.4 pc) | 
| Absolute magnitude (MV) | 5.31±0.08[2] | 
| Orbit[6] | |
| Primary | HD 3443A | 
| Companion | HD 3443B | 
| Period (P) | 25.09 y | 
| Semi-major axis (a) | 0.4627[7]" (8.9 AU[8]) | 
| Eccentricity (e) | 0.235 | 
| Inclination (i) | 65.9[9]° | 
| Semi-amplitude (K1) (primary) | 18.4 km/s | 
| Details[9] | |
| HD 3443A | |
| Mass | 0.915±0.005[3] M☉ | 
| Radius | 0.92±0.05 R☉ | 
| Luminosity | 1.2[8] L☉ | 
| Temperature | 5449[8] K | 
| Metallicity [Fe/H] | −0.12[2] dex | 
| Rotation | 32.6±4.89 d | 
| Rotational velocity (v sin i) | 2.7±1.3 km/s | 
| Age | 9.36[2] Gyr | 
| HD 3443B | |
| Mass | 0.864±0.005[3] M☉ | 
| Other designations | |
|  CD-25 225, CPD CPD-25 64, Gliese 25, HIP 2941, HR 159, 2MASS J00372057-2446023, WDS 00373–2446  | |
| HD 3443A: Gaia EDR3 2347260998051944448, TYC 6421-1924-1 | |
| HD 3443B: TYC 6421-1924-2 | |
| Database references | |
| SIMBAD | data | 
System
    
This binary star system, with an orbital semimajor axis 8.9 AU, has not had any circumstellar dust detected as of 2020.[8] While the habitable zones of the stars stretch from 0.55 to 0.95 AU from the stars, planetary orbits with a semimajor axis beyond 1.87 AU would become unstable due to the influence of the binary companion.[10]
Properties
    
The star system is enriched in oxygen compared to the Solar System, having 140% of solar oxygen abundance,[11] but is depleted in heavier elements, having 75% of solar abundance of iron.[2]
References
    
- van Leeuwen, F. (November 2007). "Validation of the new Hipparcos reduction". Astronomy and Astrophysics. 474 (2): 653–664. arXiv:0708.1752. Bibcode:2007A&A...474..653V. doi:10.1051/0004-6361:20078357. S2CID 18759600.
- Davidson, James W.; Baptista, Brian J.; Horch, Elliott P.; Franz, Otto; Van Altena, William F. (2009). "A Photometric Analysis of Seventeen Binary Stars Using Speckle Imaging". The Astronomical Journal. 138 (5): 1354–1364. doi:10.1088/0004-6256/138/5/1354.
- Andrade, Manuel (2019). "Colour-dependent accurate modelling of dynamical parallaxes and masses of visual binaries". Astronomy & Astrophysics. 630: A96. doi:10.1051/0004-6361/201936199.
- Brown, A. G. A.; et al. (Gaia collaboration) (2021). "Gaia Early Data Release 3: Summary of the contents and survey properties". Astronomy & Astrophysics. 649: A1. arXiv:2012.01533. Bibcode:2021A&A...649A...1G. doi:10.1051/0004-6361/202039657. S2CID 227254300. Gaia EDR3 record for this source at VizieR.
- Pourbaix, D.; et al. (September 2004). "SB9: The ninth catalogue of spectroscopic binary orbits". Astronomy and Astrophysics. 424: 727–732. arXiv:astro-ph/0406573. Bibcode:2004A&A...424..727P. doi:10.1051/0004-6361:20041213. S2CID 119387088.
- Pourbaix, D. (2000). "Resolved double-lined spectroscopic binaries: A neglected source of hypothesis-free parallaxes and stellar masses". Astronomy and Astrophysics Supplement Series. 145 (2): 215–222. doi:10.1051/aas:2000237.
- Tokovinin, A.; Cantarutti, R.; Tighe, R.; Schurter, P.; Van Der Bliek, N.; Martinez, M.; Mondaca, E. (2010). "High-Resolution Imaging at the SOAR Telescope". Publications of the Astronomical Society of the Pacific. 122 (898): 1483–1494. arXiv:1010.4176. doi:10.1086/657903. S2CID 26826524.
- Su, Kate Y L.; Kennedy, Grant M.; Yelverton, Ben (2020). "No significant correlation between radial velocity planet presence and debris disc properties". Monthly Notices of the Royal Astronomical Society. 495 (2): 1943–1957. arXiv:2005.03573. doi:10.1093/mnras/staa1316.
- Justesen, A. B.; Albrecht, S. (2020). "The spin-orbit alignment of visual binaries". Astronomy & Astrophysics. 642: A212. arXiv:2008.12068. doi:10.1051/0004-6361/202039138. S2CID 221340982.
- Jaime, Luisa G.; Aguilar, Luis; Pichardo, Barbara (2014). "Habitable zones with stable orbits for planets around binary systems". Monthly Notices of the Royal Astronomical Society. 443: 260–274. arXiv:1401.1006. doi:10.1093/mnras/stu1052.
- Maldonado, J.; Villaver, E. (2016). "Evolved stars and the origin of abundance trends in planet hosts". Astronomy & Astrophysics. 588: A98. arXiv:1602.00835. doi:10.1051/0004-6361/201527883. S2CID 119212009.
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.
