Truncated great icosahedron
In geometry, the truncated great icosahedron (or great truncated icosahedron) is a nonconvex uniform polyhedron, indexed as U55. It has 32 faces (12 pentagrams and 20 hexagons), 90 edges, and 60 vertices.[1] It is given a Schläfli symbol t{3,5⁄2} or t0,1{3,5⁄2} as a truncated great icosahedron.
| Truncated great icosahedron | |
|---|---|
|  | |
| Type | Uniform star polyhedron | 
| Elements | F = 32, E = 90 V = 60 (χ = 2) | 
| Faces by sides | 12{5/2}+20{6} | 
| Wythoff symbol | 2 5/2 | 3 2 5/3 | 3 | 
| Symmetry group | Ih, [5,3], *532 | 
| Index references | U55, C71, W95 | 
| Dual polyhedron | Great stellapentakis dodecahedron | 
| Vertex figure |  6.6.5/2 | 
| Bowers acronym | Tiggy | 

Cartesian coordinates
    
Cartesian coordinates for the vertices of a truncated great icosahedron centered at the origin are all the even permutations of
- (±1, 0, ±3/τ)
- (±2, ±1/τ, ±1/τ3)
- (±(1+1/τ2), ±1, ±2/τ)
where τ = (1+√5)/2 is the golden ratio (sometimes written φ). Using 1/τ2 = 1 − 1/τ one verifies that all vertices are on a sphere, centered at the origin, with the radius squared equal to 10−9/τ. The edges have length 2.
Related polyhedra
    
This polyhedron is the truncation of the great icosahedron:
The truncated great stellated dodecahedron is a degenerate polyhedron, with 20 triangular faces from the truncated vertices, and 12 (hidden) pentagonal faces as truncations of the original pentagram faces, the latter forming a great dodecahedron inscribed within and sharing the edges of the icosahedron.
| Name | Great stellated dodecahedron | Truncated great stellated dodecahedron | Great icosidodecahedron | Truncated great icosahedron | Great icosahedron | 
|---|---|---|---|---|---|
| Coxeter-Dynkin diagram |        |        |        |        |        | 
| Picture |  |  |  |  |  | 
Great stellapentakis dodecahedron
    
| Great stellapentakis dodecahedron | |
|---|---|
|  | |
| Type | Star polyhedron | 
| Face |  | 
| Elements | F = 60, E = 90 V = 32 (χ = 2) | 
| Symmetry group | Ih, [5,3], *532 | 
| Index references | DU55 | 
| dual polyhedron | Truncated great icosahedron | 

The great stellapentakis dodecahedron is a nonconvex isohedral polyhedron. It is the dual of the truncated great icosahedron. It has 60 intersecting triangular faces.
See also
    
    
References
    
- Maeder, Roman. "55: great truncated icosahedron". MathConsult.
- Wenninger, Magnus (1983), Dual Models, Cambridge University Press, doi:10.1017/CBO9780511569371, ISBN 978-0-521-54325-5, MR 0730208
External links
    
- Weisstein, Eric W. "Truncated great icosahedron". MathWorld.
- Weisstein, Eric W. "Great stellapentakis dodecahedron". MathWorld.
- Uniform polyhedra and duals
