Order-5 square tiling
In geometry, the order-5 square tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {4,5}.
| Order-5 square tiling | |
|---|---|
|  Poincaré disk model of the hyperbolic plane | |
| Type | Hyperbolic regular tiling | 
| Vertex configuration | 45 | 
| Schläfli symbol | {4,5} | 
| Wythoff symbol | 5 | 4 2 | 
| Coxeter diagram |      | 
| Symmetry group | [5,4], (*542) | 
| Dual | Order-4 pentagonal tiling | 
| Properties | Vertex-transitive, edge-transitive, face-transitive | 
Related polyhedra and tiling
    
| Spherical | Hyperbolic tilings | |||||||
|---|---|---|---|---|---|---|---|---|
|  {2,5}      |  {3,5}      |  {4,5}      |  {5,5}      |  {6,5}      |  {7,5}      |  {8,5}      | ... |  {∞,5}      | 
This tiling is topologically related as a part of sequence of regular polyhedra and tilings with vertex figure (4n).
| *n42 symmetry mutation of regular tilings: {4,n} | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Spherical | Euclidean | Compact hyperbolic | Paracompact | ||||||||
|  {4,3}      |  {4,4}      |  {4,5}      |  {4,6}      |  {4,7}      |  {4,8}...      |  {4,∞}      | |||||
| Uniform pentagonal/square tilings | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Symmetry: [5,4], (*542) | [5,4]+, (542) | [5+,4], (5*2) | [5,4,1+], (*552) | ||||||||
|      |      |      |      |      |      |      |      |      |      | ||
|  |  |  |  |  |  |  |  |  |  | ||
| {5,4} | t{5,4} | r{5,4} | 2t{5,4}=t{4,5} | 2r{5,4}={4,5} | rr{5,4} | tr{5,4} | sr{5,4} | s{5,4} | h{4,5} | ||
| Uniform duals | |||||||||||
|      |      |      |      |      |      |      |      |      |      | ||
|  |  |  |  |  |  |  |  |  | |||
| V54 | V4.10.10 | V4.5.4.5 | V5.8.8 | V45 | V4.4.5.4 | V4.8.10 | V3.3.4.3.5 | V3.3.5.3.5 | V55 | ||
This hyperbolic tiling is related to a semiregular infinite skew polyhedron with the same vertex figure in Euclidean 3-space.
References
    
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
See also
    
|  | Wikimedia Commons has media related to Order-5 square tiling. | 
External links
    
    
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.


