Order-8 square tiling
In geometry, the order-8 square tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {4,8}.
| Order-8 square tiling | |
|---|---|
|  Poincaré disk model of the hyperbolic plane | |
| Type | Hyperbolic regular tiling | 
| Vertex configuration | 48 | 
| Schläfli symbol | {4,8} | 
| Wythoff symbol | 8 | 4 2 | 
| Coxeter diagram |      | 
| Symmetry group | [8,4], (*842) | 
| Dual | Order-4 octagonal tiling | 
| Properties | Vertex-transitive, edge-transitive, face-transitive | 
Symmetry
    
This tiling represents a hyperbolic kaleidoscope of 4 mirrors meeting as edges of a square, with eight squares around every vertex. This symmetry by orbifold notation is called (*4444) with 4 order-4 mirror intersections. In Coxeter notation can be represented as [1+,8,8,1+], (*4444 orbifold) removing two of three mirrors (passing through the square center) in the [8,8] symmetry. The *4444 symmetry can be doubled by bisecting the fundamental domain (square) by a mirror, creating *884 symmetry.
This bicolored square tiling shows the even/odd reflective fundamental square domains of this symmetry. This bicolored tiling has a wythoff construction (4,4,4), or {4[3]}, 


 :
:
|  |  | 
Related polyhedra and tiling
    
This tiling is topologically related as a part of sequence of regular polyhedra and tilings with vertex figure (4n).
| *n42 symmetry mutation of regular tilings: {4,n} | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Spherical | Euclidean | Compact hyperbolic | Paracompact | ||||||||
|  {4,3}      |  {4,4}      |  {4,5}      |  {4,6}      |  {4,7}      |  {4,8}...      |  {4,∞}      | |||||
| Uniform octagonal/square tilings | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| [8,4], (*842) (with [8,8] (*882), [(4,4,4)] (*444) , [∞,4,∞] (*4222) index 2 subsymmetries) (And [(∞,4,∞,4)] (*4242) index 4 subsymmetry) | |||||||||||
|      =     =     =      |      =    |      =    =      =      |       =     |       =     =     |        =     |      | |||||
|  |  |  |  |  |  |  | |||||
| {8,4} | t{8,4} | r{8,4} | 2t{8,4}=t{4,8} | 2r{8,4}={4,8} | rr{8,4} | tr{8,4} | |||||
| Uniform duals | |||||||||||
|      |      |      |      |      |      |      | |||||
|  |  |  |  |  |  |  | |||||
| V84 | V4.16.16 | V(4.8)2 | V8.8.8 | V48 | V4.4.4.8 | V4.8.16 | |||||
| Alternations | |||||||||||
| [1+,8,4] (*444) | [8+,4] (8*2) | [8,1+,4] (*4222) | [8,4+] (4*4) | [8,4,1+] (*882) | [(8,4,2+)] (2*42) | [8,4]+ (842) | |||||
|      =     |      =    |      =     |      =     |      =    |      =     |      | |||||
|  |  |  |  |  |  |  | |||||
| h{8,4} | s{8,4} | hr{8,4} | s{4,8} | h{4,8} | hrr{8,4} | sr{8,4} | |||||
| Alternation duals | |||||||||||
|      |      |      |      |      |      |      | |||||
|  |  |  |  |  | |||||||
| V(4.4)4 | V3.(3.8)2 | V(4.4.4)2 | V(3.4)3 | V88 | V4.44 | V3.3.4.3.8 | |||||
| Uniform (4,4,4) tilings | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Symmetry: [(4,4,4)], (*444) | [(4,4,4)]+ (444) | [(1+,4,4,4)] (*4242) | [(4+,4,4)] (4*22) | ||||||||
|          |          |          |          |          |          |          |          |          |          | ||
|  |  |  |  |  |  |  |  |  |  | ||
| t0(4,4,4) h{8,4} | t0,1(4,4,4) h2{8,4} | t1(4,4,4) {4,8}1/2 | t1,2(4,4,4) h2{8,4} | t2(4,4,4) h{8,4} | t0,2(4,4,4) r{4,8}1/2 | t0,1,2(4,4,4) t{4,8}1/2 | s(4,4,4) s{4,8}1/2 | h(4,4,4) h{4,8}1/2 | hr(4,4,4) hr{4,8}1/2 | ||
| Uniform duals | |||||||||||
|  |  |  |  |  |  |  |  |  |  | ||
| V(4.4)4 | V4.8.4.8 | V(4.4)4 | V4.8.4.8 | V(4.4)4 | V4.8.4.8 | V8.8.8 | V3.4.3.4.3.4 | V88 | V(4,4)3 | ||
See also
    
|  | Wikimedia Commons has media related to Order-8 square tiling. | 
References
    
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

