Snub tetrahexagonal tiling
In geometry, the snub tetrahexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{6,4}.
| Snub tetrahexagonal tiling | |
|---|---|
|  Poincaré disk model of the hyperbolic plane | |
| Type | Hyperbolic uniform tiling | 
| Vertex configuration | 3.3.4.3.6 | 
| Schläfli symbol | sr{6,4} or | 
| Wythoff symbol | | 6 4 2 | 
| Coxeter diagram |      or    | 
| Symmetry group | [6,4]+, (642) | 
| Dual | Order-6-4 floret pentagonal tiling | 
| Properties | Vertex-transitive Chiral | 
Images
    
Drawn in chiral pairs, with edges missing between black triangles:
Related polyhedra and tiling
    
The snub tetrahexagonal tiling is fifth in a series of snub polyhedra and tilings with vertex figure 3.3.4.3.n.
| 4n2 symmetry mutations of snub tilings: 3.3.4.3.n | ||||||||
|---|---|---|---|---|---|---|---|---|
| Symmetry 4n2 | Spherical | Euclidean | Compact hyperbolic | Paracomp. | ||||
| 242 | 342 | 442 | 542 | 642 | 742 | 842 | ∞42 | |
| Snub figures |  |  |  |  |  |  |  |  | 
| Config. | 3.3.4.3.2 | 3.3.4.3.3 | 3.3.4.3.4 | 3.3.4.3.5 | 3.3.4.3.6 | 3.3.4.3.7 | 3.3.4.3.8 | 3.3.4.3.∞ | 
| Gyro figures |  |  |  |  | ||||
| Config. | V3.3.4.3.2 | V3.3.4.3.3 | V3.3.4.3.4 | V3.3.4.3.5 | V3.3.4.3.6 | V3.3.4.3.7 | V3.3.4.3.8 | V3.3.4.3.∞ | 
| Uniform tetrahexagonal tilings | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Symmetry: [6,4], (*642) (with [6,6] (*662), [(4,3,3)] (*443) , [∞,3,∞] (*3222) index 2 subsymmetries) (And [(∞,3,∞,3)] (*3232) index 4 subsymmetry) | |||||||||||
|      =     =    =    |      =    |      =    =     =    |       =    |       =    =    =      |        =    |      | |||||
|  |  |  |  |  |  |  | |||||
| {6,4} | t{6,4} | r{6,4} | t{4,6} | {4,6} | rr{6,4} | tr{6,4} | |||||
| Uniform duals | |||||||||||
|      |      |      |      |      |      |      | |||||
|  |  |  |  |  |  |  | |||||
| V64 | V4.12.12 | V(4.6)2 | V6.8.8 | V46 | V4.4.4.6 | V4.8.12 | |||||
| Alternations | |||||||||||
| [1+,6,4] (*443) | [6+,4] (6*2) | [6,1+,4] (*3222) | [6,4+] (4*3) | [6,4,1+] (*662) | [(6,4,2+)] (2*32) | [6,4]+ (642) | |||||
|      =    |      =     |      =    |      =    |      =    |      =     |      | |||||
|  |  |  |  |  |  |  | |||||
| h{6,4} | s{6,4} | hr{6,4} | s{4,6} | h{4,6} | hrr{6,4} | sr{6,4} | |||||
References
    
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
See also
    
|  | Wikimedia Commons has media related to Uniform tiling 3-3-4-3-6. | 
External links
    
    
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.



