Pentaapeirogonal tiling
In geometry, the pentaapeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of r{∞,5}.
| pentaapeirogonal tiling | |
|---|---|
|  Poincaré disk model of the hyperbolic plane | |
| Type | Hyperbolic uniform tiling | 
| Vertex configuration | (5.∞)2 | 
| Schläfli symbol | r{∞,5} or | 
| Wythoff symbol | 2 | ∞ 5 | 
| Coxeter diagram |      or    | 
| Symmetry group | [∞,5], (*∞52) | 
| Dual | Order-5-infinite rhombille tiling | 
| Properties | Vertex-transitive edge-transitive | 
Related polyhedra and tiling
    
| *5n2 symmetry mutations of quasiregular tilings: (5.n)2 | ||||||||
|---|---|---|---|---|---|---|---|---|
| Symmetry *5n2 [n,5] | Spherical | Hyperbolic | Paracompact | Noncompact | ||||
| *352 [3,5] | *452 [4,5] | *552 [5,5] | *652 [6,5] | *752 [7,5] | *852 [8,5]... | *∞52 [∞,5] | [ni,5] | |
| Figures |  |  |  |  |  |  |  | |
| Config. | (5.3)2 | (5.4)2 | (5.5)2 | (5.6)2 | (5.7)2 | (5.8)2 | (5.∞)2 | (5.ni)2 | 
| Rhombic figures |  |  |  |  | ||||
| Config. | V(5.3)2 | V(5.4)2 | V(5.5)2 | V(5.6)2 | V(5.7)2 | V(5.8)2 | V(5.∞)2 | V(5.∞)2 | 
See also
    
|  | Wikimedia Commons has media related to Uniform tiling 5-i-5-i. | 
References
    
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
External links
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.

