Truncated order-7 square tiling
In geometry, the truncated order-7 square tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1{4,7}.
| Truncated order-7 square tiling | |
|---|---|
|  Poincaré disk model of the hyperbolic plane | |
| Type | Hyperbolic uniform tiling | 
| Vertex configuration | 8.8.7 | 
| Schläfli symbol | t{4,7} | 
| Wythoff symbol | 2 7 | 4 | 
| Coxeter diagram |      | 
| Symmetry group | [7,4], (*742) | 
| Dual | Order-4 heptakis heptagonal tiling | 
| Properties | Vertex-transitive | 
Related polyhedra and tiling
    
| *n42 symmetry mutation of truncated tilings: n.8.8 | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Symmetry *n42 [n,4] | Spherical | Euclidean | Compact hyperbolic | Paracompact | |||||||
| *242 [2,4] | *342 [3,4] | *442 [4,4] | *542 [5,4] | *642 [6,4] | *742 [7,4] | *842 [8,4]... | *∞42 [∞,4] | ||||
| Truncated figures |  |  |  |  |  |  |  |  | |||
| Config. | 2.8.8 | 3.8.8 | 4.8.8 | 5.8.8 | 6.8.8 | 7.8.8 | 8.8.8 | ∞.8.8 | |||
| n-kis figures |  |  |  |  |  |  |  |  | |||
| Config. | V2.8.8 | V3.8.8 | V4.8.8 | V5.8.8 | V6.8.8 | V7.8.8 | V8.8.8 | V∞.8.8 | |||
| Uniform heptagonal/square tilings | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Symmetry: [7,4], (*742) | [7,4]+, (742) | [7+,4], (7*2) | [7,4,1+], (*772) | ||||||||
|      |      |      |      |      |      |      |      |      |      | ||
|  |  |  |  |  |  |  |  |  |  | ||
| {7,4} | t{7,4} | r{7,4} | 2t{7,4}=t{4,7} | 2r{7,4}={4,7} | rr{7,4} | tr{7,4} | sr{7,4} | s{7,4} | h{4,7} | ||
| Uniform duals | |||||||||||
|      |      |      |      |      |      |      |      |      |      | ||
|  |  |  |  |  |  |  |  | ||||
| V74 | V4.14.14 | V4.7.4.7 | V7.8.8 | V47 | V4.4.7.4 | V4.8.14 | V3.3.4.3.7 | V3.3.7.3.7 | V77 | ||
References
    
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
See also
    
|  | Wikimedia Commons has media related to Uniform tiling 7-8-8. | 
External links
    
    
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.

