Triapeirogonal tiling
In geometry, the triapeirogonal tiling (or trigonal-horocyclic tiling) is a uniform tiling of the hyperbolic plane with a Schläfli symbol of r{∞,3}.
| Triapeirogonal tiling | |
|---|---|
|  Poincaré disk model of the hyperbolic plane | |
| Type | Hyperbolic uniform tiling | 
| Vertex configuration | (3.∞)2 | 
| Schläfli symbol | r{∞,3} or | 
| Wythoff symbol | 2 | ∞ 3 | 
| Coxeter diagram |      or        | 
| Symmetry group | [∞,3], (*∞32) | 
| Dual | Order-3-infinite rhombille tiling | 
| Properties | Vertex-transitive edge-transitive | 
Uniform colorings
    
The half-symmetry form, 


 , has two colors of triangles:
, has two colors of triangles:
Related polyhedra and tiling
    
This hyperbolic tiling is topologically related as a part of sequence of uniform quasiregular polyhedra with vertex configurations (3.n.3.n), and [n,3] Coxeter group symmetry.
| Quasiregular tilings: (3.n)2 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Sym. *n32 [n,3] | Spherical | Euclid. | Compact hyperb. | Paraco. | Noncompact hyperbolic | |||||||
| *332 [3,3] Td | *432 [4,3] Oh | *532 [5,3] Ih | *632 [6,3] p6m | *732 [7,3] | *832 [8,3]... | *∞32 [∞,3] | [12i,3] | [9i,3] | [6i,3] | |||
| Figure  |  |  |  |  |  |  |  |  |  |  | ||
| Figure  |  |  |  |  | ||||||||
| Vertex | (3.3)2 | (3.4)2 | (3.5)2 | (3.6)2 | (3.7)2 | (3.8)2 | (3.∞)2 | (3.12i)2 | (3.9i)2 | (3.6i)2 | ||
| Schläfli | r{3,3} | r{3,4} | r{3,5} | r{3,6} | r{3,7} | r{3,8} | r{3,∞} | r{3,12i} | r{3,9i} | r{3,6i} | ||
| Coxeter          |      |      |      |      |      |      |      |      | ||||
|    |    |     |     | |||||||||
| Dual uniform figures | ||||||||||||
| Dual conf. |  V(3.3)2 |  V(3.4)2 |  V(3.5)2 |  V(3.6)2 |  V(3.7)2 |  V(3.8)2 |  V(3.∞)2 | |||||
| Paracompact uniform tilings in [∞,3] family | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Symmetry: [∞,3], (*∞32) | [∞,3]+ (∞32) | [1+,∞,3] (*∞33) | [∞,3+] (3*∞) | |||||||
|      |      |      |      |      |      |      |      |      |      |      | 
|      =     |      =     |      =     |      |      =     or     |      =     or     |      =     | ||||
|  |  |  |  |  |  |  |  |  |  | |
| {∞,3} | t{∞,3} | r{∞,3} | t{3,∞} | {3,∞} | rr{∞,3} | tr{∞,3} | sr{∞,3} | h{∞,3} | h2{∞,3} | s{3,∞} | 
| Uniform duals | ||||||||||
|      |      |      |      |      |      |      |      |      |      | |
|  |  |  |  |  |  |  |  |  | ||
| V∞3 | V3.∞.∞ | V(3.∞)2 | V6.6.∞ | V3∞ | V4.3.4.∞ | V4.6.∞ | V3.3.3.3.∞ | V(3.∞)3 | V3.3.3.3.3.∞ | |
| Paracompact hyperbolic uniform tilings in [(∞,3,3)] family | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Symmetry: [(∞,3,3)], (*∞33) | [(∞,3,3)]+, (∞33) | ||||||||||
|     |     |     |     |     |     |     |     | ||||
|      |      |      |      |      |      |      |      | ||||
|  |  |  |  |  |  |  |  | ||||
| (∞,∞,3) | t0,1(∞,3,3) | t1(∞,3,3) | t1,2(∞,3,3) | t2(∞,3,3) | t0,2(∞,3,3) | t0,1,2(∞,3,3) | s(∞,3,3) | ||||
| Dual tilings | |||||||||||
|        |        |        |        |        |        |        |        | ||||
|      |      |      |      |      |      |      |      | ||||
|  |  | ||||||||||
| V(3.∞)3 | V3.∞.3.∞ | V(3.∞)3 | V3.6.∞.6 | V(3.3)∞ | V3.6.∞.6 | V6.6.∞ | V3.3.3.3.3.∞ | ||||
See also
    
|  | Wikimedia Commons has media related to Uniform tiling 3-i-3-i. | 
References
    
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
External links
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.

