Snub pentahexagonal tiling
In geometry, the snub pentahexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{6,5}.
| Snub pentahexagonal tiling | |
|---|---|
|  Poincaré disk model of the hyperbolic plane | |
| Type | Hyperbolic uniform tiling | 
| Vertex configuration | 3.3.5.3.6 | 
| Schläfli symbol | sr{6,5} or | 
| Wythoff symbol | | 6 5 2 | 
| Coxeter diagram |      | 
| Symmetry group | [6,5]+, (652) | 
| Dual | Order-6-5 floret pentagonal tiling | 
| Properties | Vertex-transitive Chiral | 
Images
    
Drawn in chiral pairs, with edges missing between black triangles:
Related polyhedra and tiling
    
| Uniform hexagonal/pentagonal tilings | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Symmetry: [6,5], (*652) | [6,5]+, (652) | [6,5+], (5*3) | [1+,6,5], (*553) | ||||||||
|      |      |      |      |      |      |      |      |      |      | ||
|  |  |  |  |  |  |  |  |  | |||
| {6,5} | t{6,5} | r{6,5} | 2t{6,5}=t{5,6} | 2r{6,5}={5,6} | rr{6,5} | tr{6,5} | sr{6,5} | s{5,6} | h{6,5} | ||
| Uniform duals | |||||||||||
|      |      |      |      |      |      |      |      |      |      | ||
|  |  |  |  |  |  |  | |||||
| V65 | V5.12.12 | V5.6.5.6 | V6.10.10 | V56 | V4.5.4.6 | V4.10.12 | V3.3.5.3.6 | V3.3.3.5.3.5 | V(3.5)5 | ||
References
    
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
See also
    
|  | Wikimedia Commons has media related to Uniform tiling 3-3-5-3-6. | 
External links
    
    
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.



