Snub hexahexagonal tiling
In geometry, the snub hexahexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{6,6}.
| Snub hexahexagonal tiling | |
|---|---|
|  Poincaré disk model of the hyperbolic plane | |
| Type | Hyperbolic uniform tiling | 
| Vertex configuration | 3.3.6.3.6 | 
| Schläfli symbol | s{6,4} sr{6,6} | 
| Wythoff symbol | | 6 6 2 | 
| Coxeter diagram |           | 
| Symmetry group | [6,6]+, (662) [6+,4], (6*2) | 
| Dual | Order-6-6 floret hexagonal tiling | 
| Properties | Vertex-transitive | 
Images
    
Drawn in chiral pairs, with edges missing between black triangles:
Symmetry
    
A higher symmetry coloring can be constructed from [6,4] symmetry as s{6,4}, 



 . In this construction there is only one color of hexagon.
. In this construction there is only one color of hexagon.
Related polyhedra and tiling
    
| Uniform hexahexagonal tilings | ||||||
|---|---|---|---|---|---|---|
| Symmetry: [6,6], (*662) | ||||||
|      =    =      |      =    =      |      =    =      |      =    =      |      =    =      |      =    =      |      =    =      | 
|  |  |  |  |  |  |  | 
| {6,6} = h{4,6} | t{6,6} = h2{4,6} | r{6,6} {6,4} | t{6,6} = h2{4,6} | {6,6} = h{4,6} | rr{6,6} r{6,4} | tr{6,6} t{6,4} | 
| Uniform duals | ||||||
|      |      |      |      |      |      |      | 
|  |  |  |  |  |  |  | 
| V66 | V6.12.12 | V6.6.6.6 | V6.12.12 | V66 | V4.6.4.6 | V4.12.12 | 
| Alternations | ||||||
| [1+,6,6] (*663) | [6+,6] (6*3) | [6,1+,6] (*3232) | [6,6+] (6*3) | [6,6,1+] (*663) | [(6,6,2+)] (2*33) | [6,6]+ (662) | 
|      =    |      |      =    |      |      =    |      |      | 
|      |      |      |      |      |      |      | 
|  |  |  |  |  | ||
| h{6,6} | s{6,6} | hr{6,6} | s{6,6} | h{6,6} | hrr{6,6} | sr{6,6} | 
| Uniform tetrahexagonal tilings | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Symmetry: [6,4], (*642) (with [6,6] (*662), [(4,3,3)] (*443) , [∞,3,∞] (*3222) index 2 subsymmetries) (And [(∞,3,∞,3)] (*3232) index 4 subsymmetry) | |||||||||||
|      =     =    =    |      =    |      =    =     =    |       =    |       =    =    =      |        =    |      | |||||
|  |  |  |  |  |  |  | |||||
| {6,4} | t{6,4} | r{6,4} | t{4,6} | {4,6} | rr{6,4} | tr{6,4} | |||||
| Uniform duals | |||||||||||
|      |      |      |      |      |      |      | |||||
|  |  |  |  |  |  |  | |||||
| V64 | V4.12.12 | V(4.6)2 | V6.8.8 | V46 | V4.4.4.6 | V4.8.12 | |||||
| Alternations | |||||||||||
| [1+,6,4] (*443) | [6+,4] (6*2) | [6,1+,4] (*3222) | [6,4+] (4*3) | [6,4,1+] (*662) | [(6,4,2+)] (2*32) | [6,4]+ (642) | |||||
|      =    |      =     |      =    |      =    |      =    |      =     |      | |||||
|  |  |  |  |  |  |  | |||||
| h{6,4} | s{6,4} | hr{6,4} | s{4,6} | h{4,6} | hrr{6,4} | sr{6,4} | |||||
| 4n2 symmetry mutations of snub tilings: 3.3.n.3.n | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Symmetry 4n2 | Spherical | Euclidean | Compact hyperbolic | Paracompact | |||||||
| 222 | 322 | 442 | 552 | 662 | 772 | 882 | ∞∞2 | ||||
| Snub figures |  |  |  |  |  |  |  |  | |||
| Config. | 3.3.2.3.2 | 3.3.3.3.3 | 3.3.4.3.4 | 3.3.5.3.5 | 3.3.6.3.6 | 3.3.7.3.7 | 3.3.8.3.8 | 3.3.∞.3.∞ | |||
| Gyro figures |  |  |  |  | |||||||
| Config. | V3.3.2.3.2 | V3.3.3.3.3 | V3.3.4.3.4 | V3.3.5.3.5 | V3.3.6.3.6 | V3.3.7.3.7 | V3.3.8.3.8 | V3.3.∞.3.∞ | |||
References
    
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
See also
    
|  | Wikimedia Commons has media related to Uniform tiling 3-3-6-3-6. | 
External links
    
    
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.



